Histograms are a bar graph that was originally created for statistical analysis. In digital photography, histograms are incorporated into cameras to provide a graphical representation of the digital image data. However, today they are not just for information but also for understanding and capturing the scene you are trying to record.

Histograms cannot tell you about lighting ratios, how to use it, or what is the best flash-ambient mix, or if the subject is properly exposed. That is why a light meter is used. Along with an available light histogram, the best way to achieve optimum results that can be easily reproduced.

Photography involves many factors, and histograms can help you assess the most important of them: the contrast range of the scene. Histograms are not typically helpful in determining the exact exposure of the subject, the effect of lighting on the subject, or what to use it for.

Histograms can appear as a smooth curve, a series of jagged lines, or a combination of both. The shape of the histogram can be recognized as the shape of the scene. The ideal shape is a complete curve, and if there were "ideal shapes", they would be instantly recognizable.

It is not always easy to make sense of a histogram showing histograms... There are many factors that can affect the histogram, and the histogram is not always an accurate reflection of the actual image. However, even today their function is not fully understood and the information they provide is often not enough to make a quality determination.
CHALLENGE! Can you match each image to its Histogram?

1. A scene's tonal values and hues before it is captured.
2. Someone looks like based upon their fingerprint. Like a pilot's instruments, a
3. Trying to judge an image only based upon its histogram is like trying to tell what
4. A histogram is a great way to judge if the brightness range of a scene will fit within the dynamic range of your camera. That is, if a histogram is...
CHALLENGE! Can you match each image to its histogram?

1. **Histograms and Light Meters**
 - **What is a histogram?**
 - A histogram is a bar graph that was originally created for statistical analysis. In digital photography, it is a graphical representation of the digital image's brightness distribution.

2. **Digging deeper into histograms...**
 - **What is the best way to assure optimum results that can be easily reproduced?**
 - The best way to assure optimum results that can be easily reproduced is to use PocketWizard Wireless Freedom.

3. **Features:**
 - **Electronic Flash:**
 - Selective Quad-Triggering control buttons for flash, cameras or both without wires.
 - **Camera & Flash:**
 - PocketWizard Radio Receiver technology.

4. **PocketWizard Wireless Freedom:**
 - **Features:**
 - Built-in Radio Transmitter for simultaneously triggering light and measured with a Sekonic radio.
 - Works with all PocketWizards in a wireless radio system, eliminating the need for PC wires.

Answers on bottom
(1) Avoid subject failure and expose for the mid gray (18%) level, regardless of the distribution of tones, and exclude difference in the light reflected off of white or black. Averaging in the greater brightness caused underexposure of the black plate middle gray. Proper exposure (right halves) was achieved using a handheld incident meter which measured light falling on the subjects and determined that both subjects were properly exposed. (2) The histogram is not a suitable guide to fine tune settings to get within the ideal one to one gray level.

(2) The histogram is not a suitable guide to fine tune settings to get within the ideal one to one gray level.

(3) Averaging in the greater brightness caused underexposure of the black plate middle gray. Proper exposure (right halves) was achieved using a handheld incident meter which measured light falling on the subjects and determined that both subjects were properly exposed.

(4) Average under and over exposures. Photographic results show how even a mild change in light falling on the subjects and determine both proper exposure and image loss. Relying on a handheld meter, instead of the histogram, to determine under and over exposure compared to the metered f/stop value and resulting image. Overexposure equals image loss. Relying on a handheld meter, instead of the histogram, to determine under and over exposure compared to the metered f/stop value and resulting image. Overexposure equals image loss. Relying on a handheld meter, instead of the histogram, to determine under and over exposure compared to the metered f/stop value and resulting image. Overexposure equals image loss. Relying on a handheld meter, instead of the histogram, to determine under and over exposure compared to the metered f/stop value and resulting image. Overexposure equals image loss. Relying on a handheld meter, instead of the histogram, to determine under and over exposure compared to the metered f/stop value and resulting image. Overexposure equals image loss. Relying on a handheld meter, instead of the histogram, to determine under and over exposure compared to the metered f/stop value and resulting image. Overexposure equals image loss. Relying on a handheld meter, instead of the histogram, to determine under and over exposure compared to the metered f/stop value and resulting image. Overexposure equals image loss. Relying on a handheld meter, instead of the histogram, to determine under and over exposure compared to the metered f/stop value and resulting image. Overexposure equals image loss. Relying on a handheld meter, instead of the histogram, to determine under and over exposure compared to the metered f/stop value and resulting image. Overexposure equals image loss. Relying on a handheld meter, instead of the histogram, to determine under and over exposure compared to the metered f/stop value and resulting image. Overexposure equals image loss. Relying on a handheld meter, instead of the histogram, to determine under and over exposure compared to the metered f/stop value and resulting image. Overexposure equals image loss. Relying on a handheld meter, instead of the histogram, to determine under and over exposure compared to the metered f/stop value and resulting image. Overexposure equals image loss. Relying on a handheld meter, instead of the histogram, to determine under and over exposure compared to the metered f/stop value and resulting image. Overexposure equals image loss. Relying on a handheld meter, instead of the histogram, to determine under and over exposure compared to the metered f/stop value and resulting image. Overexposure equals image loss. Relying on a handheld meter, instead of the histogram, to determine under and over exposure compared to the metered f/stop value and resulting image. Overexposure equals image loss. Relying on a handheld meter, instead of the histogram, to determine under and over exposure compared to the metered f/stop value and resulting image. Overexposure equals image loss. Relying on a handheld meter, instead of the histogram, to determine under and over exposure compared to the metered f/stop value and resulting image. Overexposure equals image loss. Relying on a handheld meter, instead of the histogram, to determine under and over exposure compared to the metered f/stop value and resulting image. Overexposure equals image loss. Relying on a handheld meter, instead of the histogram, to determine under and over exposure compared to the metered f/stop value and resulting image. Overexposure equals image loss. Relying on a handheld meter, instead of the histogram, to determine under and over exposure compared to the metered f/stop value and resulting image. Overexposure equals image loss. Relying on a handheld meter, instead of the histogram, to determine under and over exposure compared to the metered f/stop value and resulting image. Overexposure equals image loss. Relying on a handheld meter, instead of the histogram, to determine under and over exposure compared to the metered f/stop value and resulting image. Overexposure equals image loss. Relying on a handheld meter, instead of the histogram, to determine under and over exposure compared to the metered f/stop value and resulting image. Overexposure equals image loss. Relying on a handheld meter, instead of the histogram, to determine under and over exposure compared to the metered f/stop value and resulting image. Overexposure equals image loss. Relying on a handheld meter, instead of the histogram, to determine under and over exposure compared to the metered f/stop value and resulting image. Overexposure equals image loss. Relying on a handheld meter, instead of the histogram, to determine under and over exposure compared to the metered f/stop value and resulting image. Overexposure equals image loss. Relying on a handheld meter, instead of the histogram, to determine under and over exposure compared to the metered f/stop value and resulting image. Overexposure equals image loss. Relying on a handheld meter, instead of the histogram, to determine under and over exposure compared to the metered f/stop value and resulting image. Overexposure equals image loss. Relying on a handheld meter, instead of the histogram, to determine under and over exposure compared to the metered f/stop value and resulting image. Overexposure equals image loss. Relying on a handheld meter, instead of the histogram, to determine under and over exposure compared to the metered f/stop value and resulting image. Overexposure equals image loss. Relying on a handheld meter, instead of the histogram, to determine under and over exposure compared to the metered f/stop value and resulting image. Overexposure equals image loss. Relying on a handheld meter, instead of the histogram, to determine under and over exposure compared to the metered f/stop value and resulting image. Overexposure equals image loss. Relying on a handheld meter, instead of the histogram, to determine under and over exposure compared to the metered f/stop value and resulting image. Overexposure equals image loss. Relying on a handheld meter, instead of the histogram, to determine under and over exposure compared to the metered f/stop value and resulting image. Overexposure equals image loss. Relying on a handheld meter, instead of the histogram, to determine under and over exposure compared to the metered f/stop value and resulting image. Overexposure equals image loss. Relying on a handheld meter, instead of the histogram, to determine under and over exposure compared to the metered f/stop value and resulting image. Overexposure equals image loss. Relying on a handheld meter, instead of the histogram, to determine under and over exposure compared to the metered f/stop value and resulting image. Overexposure equals image loss. Relying on a handheld meter, instead of the histogram, to determine under and over exposure compared to the metered f/stop value and resulting image. Overexposure equals image loss. Relying on a handheld meter, instead of the histogram, to determine under and over exposure compared to the metered f/stop value and resulting image. Overexposure equals image loss. Relying on a handheld meter, instead of the histogram, to determine under and over exposure compared to the metered f/stop value and resulting image. Overexposure equals image loss. Relying on a handheld meter, instead of the histogram, to determine under and over exposure compared to the metered f/stop value and resulting image. Overexposure equals image loss. Relying on a handheld meter, instead of the histogram, to determine under and over exposure compared to the metered f/stop value and resulting image. Overexposure equals image loss. Relying on a handheld meter, instead of the histogram, to determine under and over exposure compared to the metered f/stop value and resulting image. Overexposure equals image loss. Relying on a handheld meter, instead of the histogram, to determine under and over exposure compared to the metered f/stop value and resulting image. Overexposure equals image loss. Relying on a handheld meter, instead of the histogram, to determine under and over exposure compared to the metered f/stop value and resulting image. Overexposure equals image loss. Relying on a handheld meter, instead of the histogram, to determine under and over exposure compared to the metered f/stop value and resulting image. Overexposure equals image loss. Relying on a handheld meter, instead of the histogram, to determine under and over exposure compared to the metered f/stop value and resulting image. Overexposure equals image loss. Relying on a handheld meter, instead of the histogram, to determine under and over exposure compared to the metered f/stop value and resulting image. Overexposure equals image loss.

(3) Avoid subject failure and expose for the mid gray (18%) level, regardless of the distribution of tones, and exclude difference in the light reflected off of white or black. Averaging in the greater brightness caused underexposure of the black plate middle gray. Proper exposure (right halves) was achieved using a handheld incident meter which measured light falling on the subjects and determined that both subjects were properly exposed.

(4) Average under and over exposures. Photographic results show how even a mild change in light falling on the subjects and determine both proper exposure and image loss. Relying on a handheld meter, instead of the histogram, to determine under and over exposure compared to the metered f/stop value and resulting image. Overexposure equals image loss. Relying on a handheld meter, instead of the histogram, to determine under and over exposure compared to the metered f/stop value and resulting image. Overexposure equals image loss. Relying on a handheld meter, instead of the histogram, to determine under and over exposure compared to the metered f/stop value and resulting image. Overexposure equals image loss. Relying on a handheld meter, instead of the histogram, to determine under and over exposure compared to the metered f/stop value and resulting image. Overexposure equals image loss. Relying on a handheld meter, instead of the histogram, to determine under and over exposure compared to the metered f/stop value and resulting image. Overexposure equals image loss. Relying on a handheld meter, instead of the histogram, to determine under and over exposure compared to the metered f/stop value and resulting image. Overexposure equals image loss. Relying on a handheld meter, instead of the histogram, to determine under and over exposure compared to the metered f/stop value and resulting image. Overexposure equals image loss. Relying on a handheld meter, instead of the histogram, to determine under and over exposure compared to the metered f/stop value and resulting image. Overexposure equals image loss.
Although everyone has their own preferences and shooting styles, photographic imaging can be optimized by understanding what a light meter and histogram can show you in the four scenarios presented here. Virtually every common shooting situation is represented, and each example shows proper exposure as determined by a light meter—while including an interpretation of the accompanying histogram.

Avoid subject failure and expose for proper High Key and Low Key scenes. The most common problem of built-in camera meters is subject failure. It causes the exposure reading to wary “average” the collective color of the tones of these scenes, Figure 10. The histogram below show the results of selecting the camera metering settings would have been predetermined by trying to capture four different scenes for a January 25th black plate middle gray. Proper exposure light ratios were achieved using handheld incident where measured the light reading for the subjects and determined that both subjects required the identical exposure. These photographic results show how even a small f/stop variation in exposure can cause a rapid change in the distribution of tones, and indicate difference in the empirical working of the lighting setup, there is very little useful information about how the human eye and brain work in each area of tones in differences between similar images, control and reference exposure.

Balance ambient and flash on location... Photocytometry is a technique to measure the ratio of ambient or main light, to flash or fill light. For Figure 11, the exposure should be overexposed by 1 f/stop to maintain detail in the midtones. Histograms are much more sensitive in their ability to report success or failure. To determine if the meter is overexposing the subject (in this case, the orange colored plate), it would be necessary to acquiring the adjacent histogram. A well-calibrated meter will also report the correct exposure.

Avoid under and over exposures... Photocytometry, when properly used, will alert photographers immediately when necessary adjustments are required. Photographers, who inclined to negative film, must be aware of the possibility that any color compensating should make adjustments in both color plane. This is especially true when working with more than one light source, a meter is essential to evaluate the individual effect of each light source to determine both proper exposure and the effect that each will have on all print of the image, Figures 12-14.

A handheld light meter enables you to see light more completely, and make the types of decisions that will make you a better photographer. In the end, the way you record your vision of a scene or subject is all about how you interpret and/or control the light you are working with. Whether you choose to adjust the light or use a light meter, the end result will be a better picture. Although everyone has their own preferences and shooting styles, photographic imaging can be optimized by understanding what a light meter and histogram can show you in the four scenarios presented here. Virtually every common shooting situation is represented, and each example shows proper exposure as determined by a light meter—while including an interpretation of the accompanying histogram.

Do You Need a Light Meter?

HISTOGRAMS AND LIGHT METERS - 4 WAYS THEY COMPARE

- Figure 36 High End Digital Camera Histogram (Spot Reading Only Available with Proprietary Software

Push/Pull Processing?

Film and Pixel Quality Still Suffers

Push and Pull processing is an alternative to the traditional histogram adjustment for photographers who learned their craft on film. If you’ve built the skill to work within these limits, you’re off to a good start. But if you’ve been accustomed to the wider latitude (extra margin of exposure error) that color film offers, it’s time to change thinking. It may seem that any miracle can be made to happen in the digital darkroom, but creating hard exposure halations has its limits. What you’ve lost is a simple teaching tool that can teach an image to do what it can’t do. Exposure latitude is the range of exposure where detail can be captured in an image. The range (f/stop) where detail can be captured is the range (f/stop) where the light meter should set the exposure. It may seem that any miracle can be made to happen in the digital darkroom, but creating hard exposure halations has its limits. What you’ve lost is a simple teaching tool that can teach an image to do what it can’t do. Exposure latitude is the range of exposure where detail can be captured in an image. However, color film is a lot more forgiving, and film is a lot more forgiven...
Although everyone has their own preferences and shooting styles, photographic imaging can be optimized by understanding what a light meter and histogram can show you in the four scenarios presented here. Virtually every common shooting situation is represented, and each example shows proper exposure as determined by a light meter, while including an interpretation of the accompanying histogram.

(A) Avoid subject failure and expose for proper High Key and Low Key scenes.

The most common problem of built-in camera meters is subject failure. It caused the exposure response to be only “average” the reflectance values of the tones of two scenes, Figure 5. The histogram below shows the results of averaging the camera meter settings would have been underexposed by trying to conform to the black plate middle gray). Proper exposure (right halves) was achieved using a handheld meter which measured the average of all parts of the scene, Figures 10-15.

(B) Balance ambient and flash on location.

Professional imaging can show you the effect that each light will have on the final image. A handheld light meter can be used to easily check the ambient light and determine the combined exposure. The histogram is useful to gain an understanding of how the overall tonal distribution and give an indication of how High Key and Low Key subjects will reproduce.

(C) Avoid under and over exposures.

Photographers, who are not sure of proper exposure, should pay attention to Figures 15-22 which show only subtle changes compared to the metered f/stop value and resulting image. Figure 22 shows an underexposed image taken with a handheld meter, instead of the built-in meter, more accurately, independent exposures.

(D) Controlling multiple light sources, noting ratios and adjusting tonal range.

When working with more than one light, you need to be able to meter and compare each light source to determine both proper exposure and the effect that each light will have on all parts of the image, Figure 22 or 23. The histograms enable you to more easily understand the relationship among the different values that are shown in the histograms shown in Figure 16, under various combinations and light ratios.

Push/Pull Processing?

Film and digital images can be processed using special techniques to emphasize certain tones, add contrast, balance highlights and shadows, and improve overall image quality. One such technique is called “Push/Pull Processing,” which is also known as “pushing” or “pulling the film.” This involves adjusting the contrast of an image to emphasize certain tones, such as shadows or highlights, by increasing or decreasing the contrast. Push/Pull Processing can be used to enhance the appearance of images, making them look more dramatic or more subtle. It is particularly useful in digital photography, where the dynamic range of the sensor can be extended beyond what the human eye can see.

Do You Need a Light Meter?

In today’s digital age, the technology involved in photography is much more advanced than ever before. Professional photographers must have the skill to work within these limits, and this requires knowledge of how to measure light. A histogram and a light meter are essential tools for photographers, who need to balance the highlights and shadows in their images.

In Figure 29, the exposure was calculated by the camera’s built-in system. It shows the expected result, but it does not show the possible variations in the tone distribution. In Figures 30 and 32, the histograms show the range of tones that can be captured by the camera. In Figure 33, the image is underexposed, but the histogram shows that the range of tones is still present. This indicates that the exposure can be adjusted to capture the full range of tones in the scene.

In Figure 34, the exposure was calculated by the camera’s built-in system. It shows the expected result, but it does not show the possible variations in the tone distribution. In Figures 30 and 32, the histograms show the range of tones that can be captured by the camera. In Figure 33, the image is underexposed, but the histogram shows that the range of tones is still present. This indicates that the exposure can be adjusted to capture the full range of tones in the scene.

In Figure 35, the exposure was calculated by the camera’s built-in system. It shows the expected result, but it does not show the possible variations in the tone distribution. In Figures 30 and 32, the histograms show the range of tones that can be captured by the camera. In Figure 33, the image is underexposed, but the histogram shows that the range of tones is still present. This indicates that the exposure can be adjusted to capture the full range of tones in the scene.

In Figure 36, the exposure was calculated by the camera’s built-in system. It shows the expected result, but it does not show the possible variations in the tone distribution. In Figures 30 and 32, the histograms show the range of tones that can be captured by the camera. In Figure 33, the image is underexposed, but the histogram shows that the range of tones is still present. This indicates that the exposure can be adjusted to capture the full range of tones in the scene.

Some photographers prefer to use a handheld light meter. This allows them to measure the light in each individual area of a scene, and then adjust the exposure accordingly. A handheld light meter is also useful for measuring the light in an area that is too small for the camera’s built-in meter to measure. This can be particularly important when shooting in low-light conditions, where the amount of light available can be very small.

A handheld light meter enables you to see the light more completely, and make the types of decisions that will make you a better photographer.
TRYING TO JUDGE AN IMAGE ONLY BASED UPON ITS HISTOGRAM IS LIKE TRYING TO TELL WHAT A SCENE'S TONAL VALUES AND HUES BEFORE IT IS CAPTURED.

CHALLENGE! CAN YOU MATCH EACH IMAGE TO ITS HISTOGRAM?

A HISTOGRAM IS A GUIDE, IT IS UP TO YOU TO DETERMINE HOW TO USE IT.

WHAT IS A HISTOGRAM?

AS FIGURE 6 ILLUSTRATES, EVEN WHEN THE NUMBER OF STEPS IS INCREASED TO A DEGREE WHERE THE IMPRESSION IS A CONTINUOUS RANGE, IT IS NOT ALWAYS EASY TO MAKE SENSE OF A HISTOGRAM SHOWING FOREIGN.

Photography would be much easier if histograms had instantly comprehensible good shapes and bad shapes and if there were "magic shapes" that guaranteed perfect results. That's why we put graphs on the histograms in this book so visually describe the patterns illustrated here. There are a few things that you should know about the graphs as you read further.

WHAT IS A HISTOGRAM?

WHAT IS A HISTOGRAM?

0 Darker to Lighter Steps 255

Figure 5: Black - Lots of Tones, White

Figure 1: Anatomy of a Photographic Histogram

As shown in Figure 1 above, your digital camera creates a histogram that describes the tonal range of each scene you capture. The camera's instantaneous light meter is the key to gaining valuable information about a scene's tonal values and hues before it is captured. A quick glance is often not enough to make a quality determination.

A histogram is a great way to judge if the brightness range of a scene will fit within the dynamic range of your camera. That is, if the steps in each figure are of equal size and the resulting histogram shows how many pixels are at each equal brightness level, a histogram is a graphic representation of the digitally recorded image data. A histogram cannot tell you about lighting ratios, but it can tell you if the subject is too bright or too dark.

As figure 6 illustrates, even when the number of steps is increased to a degree where the impression is a continuous range, it is not always easy to make sense of a histogram showing foreign.

A histogram is a guide which is designed to show how many pixels are at each equal brightness level, a histogram is a graphic representation of the digitally recorded image data. A histogram cannot tell you about lighting ratios, but it can tell you if the subject is too bright or too dark.

As shown in Figure 1 above, your digital camera creates a histogram that describes the tonal range of each scene you capture. The camera's instantaneous light meter is the key to gaining valuable information about a scene's tonal values and hues before it is captured. A quick glance is often not enough to make a quality determination.

A histogram is a great way to judge if the brightness range of a scene will fit within the dynamic range of your camera. That is, if the steps in each figure are of equal size and the resulting histogram shows how many pixels are at each equal brightness level, a histogram is a graphic representation of the digitally recorded image data. A histogram cannot tell you about lighting ratios, but it can tell you if the subject is too bright or too dark.

As figure 6 illustrates, even when the number of steps is increased to a degree where the impression is a continuous range, it is not always easy to make sense of a histogram showing foreign.

A histogram is a guide which is designed to show how many pixels are at each equal brightness level, a histogram is a graphic representation of the digitally recorded image data. A histogram cannot tell you about lighting ratios, but it can tell you if the subject is too bright or too dark.

As shown in Figure 1 above, your digital camera creates a histogram that describes the tonal range of each scene you capture. The camera's instantaneous light meter is the key to gaining valuable information about a scene's tonal values and hues before it is captured. A quick glance is often not enough to make a quality determination.

A histogram is a great way to judge if the brightness range of a scene will fit within the dynamic range of your camera. That is, if the steps in each figure are of equal size and the resulting histogram shows how many pixels are at each equal brightness level, a histogram is a graphic representation of the digitally recorded image data. A histogram cannot tell you about lighting ratios, but it can tell you if the subject is too bright or too dark.

As figure 6 illustrates, even when the number of steps is increased to a degree where the impression is a continuous range, it is not always easy to make sense of a histogram showing foreign.

A histogram is a guide which is designed to show how many pixels are at each equal brightness level, a histogram is a graphic representation of the digitally recorded image data. A histogram cannot tell you about lighting ratios, but it can tell you if the subject is too bright or too dark.

As shown in Figure 1 above, your digital camera creates a histogram that describes the tonal range of each scene you capture. The camera's instantaneous light meter is the key to gaining valuable information about a scene's tonal values and hues before it is captured. A quick glance is often not enough to make a quality determination.

A histogram is a great way to judge if the brightness range of a scene will fit within the dynamic range of your camera. That is, if the steps in each figure are of equal size and the resulting histogram shows how many pixels are at each equal brightness level, a histogram is a graphic representation of the digitally recorded image data. A histogram cannot tell you about lighting ratios, but it can tell you if the subject is too bright or too dark.

As figure 6 illustrates, even when the number of steps is increased to a degree where the impression is a continuous range, it is not always easy to make sense of a histogram showing foreign.

A histogram is a guide which is designed to show how many pixels are at each equal brightness level, a histogram is a graphic representation of the digitally recorded image data. A histogram cannot tell you about lighting ratios, but it can tell you if the subject is too bright or too dark.

As shown in Figure 1 above, your digital camera creates a histogram that describes the tonal range of each scene you capture. The camera's instantaneous light meter is the key to gaining valuable information about a scene's tonal values and hues before it is captured. A quick glance is often not enough to make a quality determination.

A histogram is a great way to judge if the brightness range of a scene will fit within the dynamic range of your camera. That is, if the steps in each figure are of equal size and the resulting histogram shows how many pixels are at each equal brightness level, a histogram is a graphic representation of the digitally recorded image data. A histogram cannot tell you about lighting ratios, but it can tell you if the subject is too bright or too dark.

As figure 6 illustrates, even when the number of steps is increased to a degree where the impression is a continuous range, it is not always easy to make sense of a histogram showing foreign.

A histogram is a guide which is designed to show how many pixels are at each equal brightness level, a histogram is a graphic representation of the digitally recorded image data. A histogram cannot tell you about lighting ratios, but it can tell you if the subject is too bright or too dark.

As shown in Figure 1 above, your digital camera creates a histogram that describes the tonal range of each scene you capture. The camera's instantaneous light meter is the key to gaining valuable information about a scene's tonal values and hues before it is captured. A quick glance is often not enough to make a quality determination.